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Abstract

Providing explanations for deep neural networks (DNNs) is
essential for their use in domains wherein the interpretability
of decisions is a critical prerequisite. Despite the plethora of
work on interpreting DNNs, most existing solutions offer in-
terpretability in an ad hoc, one-shot, and static manner, with-
out accounting for the perception, understanding, or response
of end-users, resulting in their poor usability in practice.
In this paper, we argue that DNN interpretability should be
implemented as the interactions between users and models.
We present i-Algebra, a first-of-its-kind interactive frame-
work for interpreting DNNs. At its core is a library of atomic,
composable operators, which explain model behaviors at
varying input granularity, during different inference stages,
and from distinct interpretation perspectives. Leveraging a
declarative query language, users are enabled to build various
analysis tools (e.g., “drill-down”, “comparative”, “what-if”
analysis) via flexibly composing such operators. We proto-
type i-Algebra and conduct user studies in a set of represen-
tative analysis tasks, including inspecting adversarial inputs,
resolving model inconsistency, and cleansing contaminated
data, all demonstrating its promising usability.

Introduction
The recent advances in deep learning have led to break-

throughs in a number of long-standing artificial intelligence
tasks, enabling use cases previously considered strictly ex-
perimental. Yet, the state-of-the-art performance of deep
neural networks (DNNs) is often achieved at the cost of their
interpretability: it is challenging to understand how a DNN
arrives at a particular decision, due to its high non-linearity
and nested structure (Goodfellow, Bengio, and Courville
2016). This is a major drawback for domains wherein the
interpretability of decisions is a critical prerequisite.

A flurry of interpretation methods (Sundararajan, Taly,
and Yan 2017; Dabkowski and Gal 2017; Fong and Vedaldi
2017; Zhang, Nian Wu, and Zhu 2018) have since been pro-
posed to help understand the inner workings of DNNs. For
example, in Figure 1, the attribution map highlights the most
informative features of input x with respect to model predic-
tion f(x). A DNN (classifier), coupled with an interpreta-
tion model (interpreter), forms an interpretable deep learn-
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Figure 1: Interactive interpretation of DNNs.

ing system (IDLS), which is believed to improve the model
trustworthiness (Tao et al. 2018; Guo et al. 2018).

Yet, despite the enhanced interpretability, today’s IDLSes
are still far from being practically useful. In particular, most
IDLSes provide interpretability in an ad hoc, single-shot,
and static manner, without accounting for the perception,
understanding, and response of the users, resulting in their
poor usability in practice. For instance, most IDLSes gen-
erate a static saliency map to highlight the most informative
features of a given input; however, in concrete analysis tasks,
the users often desire to know more, for instance,

• How does the feature importance change if some other fea-
tures are present/absent?

• How does the feature importance evolve over different
stages of the DNN model?

• What are the common features of two inputs that lead to
their similar predictions?

• What are the discriminative features of two inputs that re-
sult in their different predictions?

Moreover, the answer to one question may trigger followup
questions from the user, giving rise to an interactive pro-
cess. Unfortunately, the existing IDLSes, limited by their
non-interactive designs, fail to provide interpretability tai-
lored to the needs of individual users.

Our Work – To bridge the striking gap, we present i-
Algebra, a first-of-its-kind interactive framework for inter-
preting DNN models, which allows non-expert users to eas-
ily explore a variety of interpretation operations and perform
interactive analyses. The overall design goal of i-Algebra is
to implement the DNN interpretability as the interactions be-
tween the user and the model.

Specifically, to accommodate a range of user preferences
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Figure 2: A framework of interactive interpretation of DNNs.

for interactive modes with respect to different DNN mod-
els and analysis tasks, we design an expressive algebraic
framework, as shown in Figure 2. Its fundamental building
blocks are a library of atomic operators, which essentially
produce DNN interpretability at varying input granularity,
during different model stages, and from complementary in-
ference perspectives. On top of this library, we define a SQL-
like declarative query language, which allows users to flexi-
bly compose the atomic operators and construct a variety of
analysis tasks (e.g., “drill-down,” “what-if,” “comparative”
analyses). As a concrete example, given two inputs x and
x′, the query below compares their interpretation at the l-th
layer of the DNN f and finds the most discriminative fea-
tures of x and x′ with respect to their predictions.

select l from f(x) left join (select l from f(x'))

We prototype i-Algebra and evaluate its usability in three
representative tasks: resolving model inconsistency, inspect-
ing adversarial inputs, and cleansing contaminated data. The
studies conducted on Amazon MTurk show that compared
with the conventional interpretability paradigm, i-Algebra
significantly improves the analysts’ performance. For exam-
ple, in the task of resolving model inconsistency, we ob-
serve over 30% increase in the analysts’ accuracy of iden-
tifying correct predictions and over 29% decrease in their
task execution time; in the task of identifying adversarial
inputs, i-Algebra improves the analysts’ overall accuracy
by 26%; while in the task of cleansing poisoning data, i-
Algebra helps the analysts’ detecting over 60% of the data
points misclassified by the automated tool.

Our Contributions – To our best knowledge, i-Algebra
represents the first framework for interactive interpretation
of DNNs. Our contributions are summarized as follows.

• We promote a new paradigm for interactive interpretation
of DNN behaviors, which accounts for the perception, un-
derstanding, and responses of end-users.

• We realize this paradigm with an expressive algebraic
framework built upon a library of atomic interpretation op-
erators, which can be flexibly composed to construct vari-
ous analysis tasks.

• We prototype i-Algebra and empirically evaluate it in
three representative analysis tasks, all showing its promis-
ing usability in practice.

Background and Overview
DNN Interpretation

We primarily focus on predictive tasks (e.g., image classi-
fication): a DNN f represents a function f : X → C, which
assigns a given input x ∈ X to one of a set of predefined
classes C. We mainly consider post-hoc, instance-level in-
terpretation, which explains the causal relationship between
input x and model prediction f(x). Such interpretations are
commonly given in the form of attribution maps. As shown
in Figure 1, the interpreter g generates an attribution map
m = g(x; f), with its i-th element m[i] quantifying the im-
portance of x’s i-th feature x[i] with respect to f(x).
Overview of i-Algebra

Despite the rich collection of interpretation models, they
are used in an ad hoc and static manner within most existing
IDLSes, resulting in their poor usability in practice (Zhang
et al. 2020). To address this, it is essential to account for the
perception, understanding, and response of end-users. We
achieve this by developing i-Algebra, an interactive frame-
work that allows users to easily analyze DNN’s behavior
through the lens of interpretation.

Mechanisms – i-Algebra is built upon a library of com-
posable atomic operators, which provides interpretability at
different input granularities (e.g., within a user-selected win-
dow), during different model stages (e.g., at a specific DNN
layer), and from different inference perspectives (e.g., find-
ing discriminative features). Note that we only define the
functionality of these operators, while their implementation
can be flexibly based on concrete interpretation models.

Interfaces – On top of this library, we define an SQL-like
declarative query language to allow users to flexibly com-
pose the operators to construct various analysis tasks (e.g.,
“drill-down,” “what-if,” “comparative” analysis), which ac-
commodates the diversity of analytical needs from different
users and circumvents the “one-size-fits-all” challenge.

An Interpretation Algebra
We begin by describing the library of atomic operators.

Note that the operators can inherently be extended and all the
operators are defined in a declarative manner, independent of
their concrete implementation.
Atomic Operators

At the core of i-Algebra is a library of atomic operators,
including identity, projection, selection, join, and anti-join.
We exemplify with the Shapley value framework (Ancona,
Öztireli, and Gross 2019; Chen et al. 2019) to illustrate one
possible implementation of i-Algebra, which can also be im-
plemented based on other interpretation models.

Identity – The identity operator represents the basic inter-
pretation φ(x; x̄, f), which generates the interpretation of a
given input xwith respect to the DNN f and a baseline input
x̄ (e.g., an all-zero vector).1 Conceptually, the identity oper-
ator computes the expected contribution of x’s each feature
to the prediction f(x). Within the Shapley framework, with
x as a d-dimensional vector (x ∈ Rd) and Ik as a k-sized

1When the context is clear, we omit x̄ and f in the notation.



subset of I = {1, 2, . . . , d}, we define a d-dimensional vec-
tor xIk , with its i-th dimension defined as:

[xIk ]i =

{
xi (i ∈ Ik)
x̄i (i 6∈ Ik)

(1)

Intuitively, xIk substitutes x̄ with x along the dimensions
of Ik. Then the attribution map is calculated as:

[φ(x)]i =
1

d

d−1∑
k=0

EIk [f(xIk∪{i})− f(xIk)] (2)

where Ik is randomly sampled from I \ {i}.
Input Identity Projection

Figure 3: Sample inputs and their interpretation under the identity
and projection operators (ImageNet and ResNet50).

Projection – While the basic interpretation describes the
global importance of x’s features with respect to its predic-
tion f(x), the user may wish to estimate the local impor-
tance of a subset of features. Intuitively, the global impor-
tance approximates the decision boundary in a high dimen-
sional space, while the local importance focuses on a lower-
dimensional space, thereby being able to describe the local
boundary more precisely.

The projection operator Π allows the user to zoom in a
given input. For an input x and a window w (on x) se-
lected by the user, Πw(x) generates the local importance
of x’s features within w. To implement it within the Shap-
ley framework, we marginalize x’s part outside the win-
dow w with the baseline input x̄ and compute the marginal-
ized interpretation. Let w corresponds to the set of indices
{w1, w2, . . . , w|w|} in I . To support projection, we define
the coalition Ik as a k-sized subset of {w1, w2, . . . , w|w|},
and redefine the attribution map as: [Πw(x)]i ={

1
|w|
∑|w|−1

k=0 EIk [f(xIk∪{i})− f(xIk)] i ∈ w
0 i 6∈ w

(3)

Figure 3 illustrates a set of sample images and their inter-
pretation under the identity and projection operators (within
user-selected windows). Observe that the projection opera-
tor highlights how the model’s attention shifts if the features
out of the window are nullified, which is essential for per-
forming the “what-if” analysis.

Selection – While the basic interpretation shows the static
importance of x’s features, the user may also be interested
in understanding how the feature importance varies dynam-
ically throughout different inference stages. Intuitively, this
dynamic importance interpretation captures the shifting of
the “attention” of DNNs during different stages, which helps

Figure 4: Implementation of the selection operator.

the user conduct an in-depth analysis of the inference pro-
cess (Karpathy, Johnson, and Fei-Fei 2016).

The selection operator σ allows the user to navigate
through different stages of DNNs and investigate the dy-
namic feature importance. Given an input x, a DNN f which
consists of n layers f[1:n], and the layer index i selected by
the user, σi(x) generates the interpretation at the i-th layer.

One possible implementation of σl(x) is as follows. We
truncate the DNN f at the l-th layer, concatenate it with the
output layer, and re-train the linear connections between the
l-th layer and the output layer, as illustrated in Figure 4. Let
fl denote the truncated DNN. Then the selection operator
generates a d-dimensional map σl(x) defined as:

[σl(x)]i = [φ(x; x̄, fl)]i (4)

which substitutes f in Eqn (2) with the truncated DNN fl.
Input Selection 

Figure 5: Sample inputs and their interpretation under the selection
operator (ImageNet and ResNet50).

Figure 5 illustrates a set of sample inputs (from ImageNet)
and their attribution maps under the selection operator.
Specifically, we select i = 2, 3, 4 of the DNN (ResNet50). It
is observed that the model’s attention gradually focuses on
the key objects within each image as i increases.

Join – There are also scenarios in which the user desires
to compare two inputs x and x′ from the same class and find
the most informative features shared by x and x′, from the
perspective of the DNN model. The join of two inputs x and
x′, denoted by x ./ x′, compares two inputs and generates
the interpretation highlighting the most informative features
shared by x and x′. Note that the extension of this definition
to the case of multiple inputs is straightforward.

Within the Shapley framework, x ./ x′ can be imple-
mented as the weighted sum of the Shapley values of x and
x′ (given the weight of x’s map as ε):

[x ./ x′]i = ε · [φ(x; x̄, f)]i + (1− ε) · [φ(x′; x̄, f)]i (5)

Intuitively, a large value of [x ./ x′]i tends to indicate that
the i-th feature is important for the predictions on both x and
x′ (with respect to the baseline x̄).

Figure 6 illustrates two pairs of sample inputs and their
attribution maps under the join operator as ε = 0.5, which
highlight the most important features with respect to their
predictions (“horse” and “plane”) shared by both inputs.
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Figure 6: Sample inputs and their interpretation under the join op-
erator (CIFAR10 and VGG19).

Anti-Join – Related to the join operator, the anti-join of
two inputs x and x′, denoted by x ♦ x′, compares two inputs
x and x′ from different classes and highlights their most in-
formative and discriminative features. For instance, in image
classification, the user may be interested in finding the most
contrastive features of two images that result in their differ-
ent classifications.

Within the Shapley value framework, the anti-join oper-
ator x ♦ x′ can be implemented as the attribution map of x
with respect to x′ and that of x′ with respect to x:

[x ♦ x′]i = ([φ(x;x′, f)]i, [φ(x′;x, f)]i) (6)

It is worth comparing Eqn (5) and Eqn (6): Eqn (5) com-
pares x (and x′) with the baseline x̄, highlighting the contri-
bution of each feature of x (and x′) with respect to the dif-
ference f(x)−f(x̄) (and f(x′)−f(x̄)); meanwhile, Eqn (6)
compares x and x′, highlighting the contribution of each fea-
ture of x (and x′) with respect to the difference f(x)−f(x′)
(and f(x′)− f(x)).
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Anti-Join

Figure 7: Sample inputs and their interpretation under the anti-join
operator (CIFAR10 and VGG19).

Figure 7 compares sample inputs and their attribution
maps under the join operator. In each pair, one is a legiti-
mate input and classified correctly (e.g., “ship” and “dog”);
the other is an adversarial input (crafted by the PGD at-
tack (Madry et al. 2018)) and misclassified (e.g., “frog” and
“cat”). The anti-join operator highlights the most discrimi-
native features that result in their different predictions.

Note that the anti-join operator is extensible to the case of
the same input x but different models f and f ′. Specifically,
to compute x’s features that discriminate f(x) from f ′(x),
we update the expectation in Eqn (2) as EIk [f(xIk∪{i}) −
f ′(xIk)]. Intuitively, for i-th feature, we compute the differ-
ence of its contribution with respect to f(x) and f ′(x).
Compositions

The library of atomic operators is naturally composable.
For instance, one may combine the selection and projection

operators, Πw(σl(x)), which extracts the interpretation at
the l-th layer of the DNN and magnifies the features within
the window w; it is possible to compose the join and selec-
tion operators, σl(x) ./ σl(x

′), which highlights the most
discriminative features of x and x′ resulting in their differ-
ent predictions from the view of the l-th layer of the DNN
f ; further, it is possible to combine two anti-join operators,
x1 ♦ x2 ♦ x3, which generates the most discriminative fea-
tures of each input with respect to the rest two.

To ensure their semantic correctness, one may specify
that the compositions of different operators to satisfy cer-
tain properties (e.g., commutative). For instance, the com-
position of the selection (σ) and projection (Π) operators
needs to satisfy the commutative property, that is, the or-
der of applying the two operators should not affect the in-
terpretation result, Πwσl(x) = σlΠw(x)å. Moreover, cer-
tain compositions are allowed only under certain conditions
(conditional). For instance, the composition of two selection
operators, σlσl′(x), is only defined if l ≤ l′, that is, it gener-
ates the interpretation of x with respect to the layer with the
smaller index in l and l′ of the DNN f . Further, the compo-
sition of the join and anti-join operators are undefined.

Interactive Interpretation
Further, i-Algebra offers a declarative language that al-

lows users to easily “query” the interpretation of DNN be-
haviors and build interactive analysis tasks as combinations
of queries (cf. Figure 2).
A Declarative Query Language

Specifically, we define an SQL-like declarative query lan-
guage for interpreting DNN behaviors. Next we first define
the statements for each atomic operator and then discuss
their compositions.

We use a set of keywords: “select” for the selection oper-
ator, “where” for the projection operator, “join” for the join
operator, and “left join” for the anti-join operator. The atomic
operators can be invoked using the following statements:
select * from f(x)

– the identity operator φ(x).
select * from f(x) where w

– the projection operator Πw(x).
select l from f(x)

– the selection operator σl(x).
select * from f(x) join (select * from f(x'))

– the join operator x ./ x′.
select * from f(x) left join (select * from f(x'))

– the anti-join operator x ♦ x′.
Similar to the concept of “sub-queries” in SQL, more

complicated operators can be built by composing the state-
ments of atomic operators. Following are a few examples.
select l from f(x) where w

– the composition of selection and projection Πwσl(x).
select l from f(x) join (select l from f(x'))

– the composition of join and selection σl(x) ./ σl(x
′).



Interactive Analysis
Through the declarative queries, users are able to conduct

an in-depth analysis of DNN behaviors, including:
Drill-Down Analysis – Here the user applies a sequence

of projection and/or selection to investigate how the DNN
model f classifies a given input x at different granularities
of x and at different stages of f . This analysis helps answer
important questions such as: (i) how does the importance of
x’s features evolve through different stages of f? (ii) which
parts of x are likely to be the cause of its misclassification?
(iii) which stages of f do not function as expected?

Comparative Analysis – In a comparative analysis, the
user applies a combination of join and/or anti-join operators
on the target input x and a set of reference inputs X to com-
pare how the DNN f processes x and x′ ∈ X . This analy-
sis helps answer important questions, including: (i) from f ’s
view, why are x and x′ ∈ X similar or different? (ii) does
f indeed find the discriminative features of x and x′ ∈ X ?
(iii) if x is misclassified into the class of x′, which parts of
x are likely to be the cause?

What-If Analysis – In what-if analysis, the user modi-
fies parts of the input x before applying the operators and
compares the interpretation before and after the modifica-
tion. The modification may include (i) nullification (e.g., re-
placing parts of x with baseline), (ii) substitution (e.g., sub-
stituting parts of x with another input), and (iii) transforma-
tion (e.g., scaling, rotating, shifting). This analysis allows
the user to analyze f ’s sensitivity to each part of x and its
robustness against perturbation.

Note that these tasks are not exclusive; rather, they may
complement each other by providing different perspectives
on the behaviors of DNN models. For instance, both drill-
down and what-if analyses help the user gauge the impact of
x’s part x[w] on f ’s prediction; yet, the former focuses on
analyzing the decision boundary within the space spanned
by the features w, while the latter focuses on analyzing the
overall contribution of x[w] to f ’s prediction.

Empirical Evaluation
We prototype i-Algebra and empirically evaluate its us-

ability in a set of case studies. The evaluation is designed to
answer the following key questions.
• RQ1: Versatility – Does i-Algebra effectively support a

range of analysis tasks?
• RQ2: Effectiveness – Does it significantly improve the

analysis efficacy in such tasks?
• RQ3: Usability – Does it provide intuitive, user-friendly

interfaces for analysts?
We conduct user studies on the Amazon Mechanical Turk

platform, in which each task involves 1,250 assignments
conducted by 50 qualified workers. We apply the follow-
ing quality control: (i) the users are instructed about the task
goals and declarative queries, and (ii) the tasks are set as
small batches to reduce bias and exhaustion.
Case A: Resolving Model Inconsistency

Two DNNs trained for the same task often differ slightly
due to (i) different training datasets, (ii) different training

regimes, and (iii) randomness inherent in training algorithms
(e.g., random shuffle and dropout). It is thus critical to iden-
tify the correct one when multiple DNNs disagree on the
prediction on a given input. In this case study, the user is
requested to use i-Algebra to resolve cases that are incon-
sistent between two DNNs f and f ′.

Setting – On CIFAR10, we train two VGG19 models f
and f ′. In the testing set of CIFAR10, 946 samples are pre-
dicted differently by f and f ′, in which 261 samples are cor-
rectly predicted by f and 565 samples by f ′. Within this set,
824 inputs are classified correctly by either f or f ′, which
we collect as the testing set T for our study.

= “Deer” = “Cat”

= “Bird” = “Deer”

Figure 8: Sample inputs, their classification by f and f ′, and their
interpretation by i-Algebra in Case A.

We randomly sample 50 (half predicted correctly by
f and the other half by f ′) inputs from T to form the
testing set. Specifically, the baseline directly generates the
interpretation f(x) and f ′(x) for each input x; i-Algebra
applies the Anti-Join operator to highlight x’s most discrim-
inative features (from the views of f and f ′) that result in
its different predictions, with the declarative query given
as: select * from f(x) left join (select * from f'(x)).
Figure 8 shows a set of sample inputs, their classification
under f and f ′, and their interpretation by i-Algebra.
Observe that the discriminative features on the correct
model tend to agree with human perception better.

Evaluation – We evaluate i-Algebra in terms of (i) ef-
fectiveness – whether it helps users identify the correct pre-
dictions, and (ii) efficiency – whether it helps users conduct
the analysis more efficiently. We measure the effectiveness
using the metric of accuracy (the fraction of correctly distin-
guished inputs among total inputs) and assess the efficiency
using the metric of user response time (URT), which is mea-
sured by the average time the users spend on each input.
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Figure 9: Users’ accuracy and URT measures under baseline and
i-Algebra in Case A.

Figure 9 compares the users’ performance using the base-
line and i-Algebra on the task of resolving model incon-
sistency. We have the following observations: (i) i-Algebra
significantly improves the users’ accuracy of identifying the
correct predictions on both f and f ′, with the overall accu-



racy increasing by around 30%; (ii) Despite its slightly more
complicated interfaces, the URT on i-Algebra does not ob-
serve a significant change from the baseline, highlighting its
easy-to-use mechanisms and interfaces.

Case B: Detecting Adversarial Inputs
One intriguing property of DNNs is their vulnerability to

adversarial inputs, which are maliciously crafted samples to
deceive target DNNs (Madry et al. 2018; Carlini and Wagner
2017). Adversarial inputs are often generated by carefully
perturbing benign inputs, with difference imperceptible to
human perception. Recent work has proposed to leverage in-
terpretation as a defense mechanism to detect adversarial in-
puts (Tao et al. 2018). Yet, it is shown that the interpretation
model is often misaligned with the underlying DNN model,
resulting in the possibility for the adversary to deceive both
models simultaneously (Zhang et al. 2020). In this use case,
the users are requested to leverage i-Algebra to inspect po-
tential adversarial inputs from multiple different interpreta-
tion perspectives, making it challenging for the adversary to
evade the detection across all such views.

Setting – We use ImageNet as the dataset and consider a
pre-trained ResNet50 (77.15% top-1 accuracy) as the tar-
get DNN. We also train a set of truncated DNN models
(l = 2, 3, 4) for the selection operator σl(x) in i-Algebra
(details in § ). We apply ADV2 (Zhang et al. 2020), an at-
tack designed to generate adversarial inputs deceiving both
the DNN and its coupled interpreter. Specifically, ADV2 op-
timizes the objective function:

minx `prd (f(x), ct) + λ`int (g(x; f),mt)
s.t. ∆ (x, x◦) ≤ ε (7)

where `prd ensures that the adversarial input x is misclassified
to a target class ct by the DNN f , and `int ensures that x
generates an attribution map similar to a target map mt (the
attribution map of the benign input x◦).

From ImageNet, we randomly sample 50 inputs and gen-
erate their adversarial counterparts, which are combined
with another 50 randomly sampled benign inputs to form the
testing set T . We request the users to identify the adversarial
inputs through the lens of baseline and i-Algebra. In partic-
ular, by varying l and w, i-Algebra provides interpretation
at various inference stages and input granularity, with the
declarative query template as: select l from f(x) where w.
Figure 10 shows sample adversarial inputs and their inter-
pretation under i-Algebra. Observe that by from multiple
complementary perspectives, the adversarial inputs show
fairly distinguishable interpretation.

Evaluation – We quantitatively assess the usability of i-
Algebra in terms of (i) effectiveness – whether it helps users
identify the adversarial inputs more accurately, and (ii) effi-
ciency – whether it helps users conduct the analysis more
efficiently. Specifically, considering adversarial and benign
inputs as positive and negative cases, we measure the effec-
tiveness using the metrics of precision and recall (as well as
accuracy and F-1 score):

We assess the efficiency using the metric of user response
time (URT), which is measured by the average time the users
spend on each task with the given tool.

Figure 10: Sample adversarial inputs and i-Algebra interpretation.
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Figure 11: Users’ performance and URT measures under baseline
and i-Algebra in Case B.

Figure 11 compares the users’ performance and URT us-
ing the baseline interpretation and i-Algebra on the task of
identifying adversarial inputs. We have the following ob-
servations: (i) through the lens of interpretation from mul-
tiple complementary perspectives, i-Algebra improves the
users’ effectiveness of distinguishing adversarial and benign
inputs with about 26% increase in the overall accuracy; (ii)
compared with the baseline, the average URT on i-Algebra
grows from 60.45s to 303.54s, which can be intuitively ex-
plained by its requirement for multiple rounds of interactive
queries. Given the significant performance improvement, the
cost of execution time is well justified.

Figure 12: Sample trigger-embedded inputs at inference, which are
misclassified as “deer”.

Case C: Cleansing Poisoning Data
Orthogonal to adversarial examples, another concern for

the safety of DNNs is their vulnerability to manipulations of
their training data. In the backdoor attacks (e.g., (Gu, Dolan-
Gavitt, and Garg 2017)), by injecting corrupted inputs in
training a DNN, the adversary forces the resultant model
to (i) misclassify the inputs embedded with particular pat-
terns (“triggers”) to a target class and (ii) behave normally



on benign inputs. Figure 12 shows a set of trigger-embedded
inputs which are misclassified from “truck” to “deer”.

Since the backdoored DNNs correctly classify benign in-
puts, once trained, they are insidious to be detected. One
mitigation is to detect corrupted instances in the training set,
and then to use cleansed data to re-train the DNN (Tran, Li,
and Madry 2018). Typically, the analyst applies statistical
analysis on the deep representations of the training data and
detects poisoning inputs based on their statistical anomaly.

We let the analyst leverage i-Algebra to perform fine-
tuning of the results detected by the statistical analysis.
Through the lens of the interpretation, the users may in-
spect the inputs that fall in the uncertain regions (e.g., 1.25
∼ 1.75 standard deviation) and identify false positives and
false negatives by the automated detection, which may fur-
ther improve the mitigation of backdoor attacks.

Prediction Ground-truth
+ -

+ 48 654
- 399 3574

Table 1. Samples statistics in Case C.

Setting – We use CIFAR10 as the underlying dataset and
VGG19 as the target DNN. We consider using the back-
door attack in (Gu, Dolan-Gavitt, and Garg 2017) to gen-
erate poisoning instances in one particular class “truck”.
We apply spectral signature (Tran, Li, and Madry 2018) to
identify potential poisoning instances. For each data point
xi in a particular class, it examines xi’s deep representa-
tion R(xi) at the penultimate layer. After obtaining the top
right singular vector of the centered representation [R(xi)−
1
n

∑n
i=1R(xi)]

n
i=1, the data points beyond 1.5 standard de-

viation from the center are identified as poisonous. How-
ever, this automated tool is fairly inaccurate. Table 1 summa-
rizes the predicted results and the ground truth. In this case,
we request users to identify positive and negative cases that
are misclassified by the automated tool, with the declarative
query template given as: select l from f(x).

Precision Recall Accuracy F1-Score
0.609 0.6343 0.586 0.622

Table 2. Users’ performance under i-Algebra in Case C.

Evaluation – We measure the users’ effectiveness of dis-
tinguishing positive and negative cases. The results are listed
in Table 2. Observe that equipped with i-Algebra, the users
successfully classify around 60% of the data point misclassi-
fied by the automated tool. Figure 13 shows the distribution
of URT for this task. Note that a majority of users take less
than 50s to complete the tasks.

Related work
Next, we survey three categories of prior work: inter-

pretable deep learning, model attacks and defenses, and in-
teractive learning.

Interpretable Deep Learning – Typically, DNN inter-
pretability can be obtained by either designing interpretable
models (Zhang, Nian Wu, and Zhu 2018) or extracting post-
hoc interpretations. The post-hoc interpretation methods can
be categorized as backprop- (Sundararajan, Taly, and Yan

Distribution of URT on Use Case C
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Figure 13: URT distribution in Case C.

2017), representation- (Selvaraju et al. 2017), meta-model-
(Dabkowski and Gal 2017), and perturbation-based (Fong
and Vedaldi 2017). Instead of developing yet another inter-
pretation method or enhancing existing ones, this work pro-
poses the paradigm of interactive interpretability, which can
be flexibly implemented upon existing methods.

Model Attacks and Defenses – DNNs are becoming
the new targets of malicious attacks, including adversar-
ial attacks (Carlini and Wagner 2017) and poisoning at-
tacks (Shafahi et al. 2018). Although a line of work strives
to improve DNN robustness (Tramèr et al. 2018; Tran, Li,
and Madry 2018), existing defenses are often penetrated by
even stronger attacks (Ling et al. 2019), resulting in a con-
stant arms race. Our work involves the users in the process
of model robustness improvement, which is conducive to en-
hancing model trustworthiness.

Interactive Learning – Interactive learning couples hu-
mans and machine learning models tightly within the learn-
ing process. The existing work can be roughly categorized
as model understanding (Krause, Perer, and Bertini 2016;
Krause, Perer, and Ng 2016), which allows users to inter-
pret models’ input-output dependence, and model debug-
ging (Wu et al. 2019; Nushi, Kamar, and Horvitz 2018),
which allows users to detect and fix models’ mistakes. i-
Algebra can be leveraged to not only understand DNNs’
behaviors but also facilitate diverse security tasks including
model debugging, data cleansing, and attack inspection.

Conclusion
This work promotes a paradigm shift from static interpre-

tation to interactive interpretation of neural networks, which
we believe will significantly improve the usability of exist-
ing interpretation models in practice. We present i-Algebra,
a first-of-its-kind interactive framework for DNN interpreta-
tion. At its core is a library of atomic operators that produce
the interpretation of DNN behaviors at varying input gran-
ularity, at different inference stages, and from distinct inter-
pretation perspectives. A declarative query language is de-
fined for users to flexibly construct a variety of analysis tasks
by composing different operators. We prototype i-Algebra
and conduct extensive studies in three representative analy-
sis tasks, all demonstrating its promising usability.
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